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Abstract. The process e+e− → qq̄γ contains radiation zeros, i.e. configurations of the four–momenta for
which the scattering amplitude vanishes. We calculate the positions of these zeros for u–quark and d–quark
production and assess the feasibility of identifying the zeros in experiments at high energies. The radiation
zeros are shown to occur also for massive quarks, and we discuss how the bb̄γ final state may offer a
particularly clean environment in which to observe them.

1 Introduction

In certain high–energy scattering processes involving
charged particles and the emission of one or more photons,
the scattering amplitude vanishes for particular configura-
tions of the final–state particles. Such configurations are
known as radiation zeros or null zones. A very clear and
comprehensive review by Brown can be found in [1].

Radiation zeros have an interesting history. Although
they are in principle present in QED amplitudes, they first
attracted significant attention in processes involving weak
bosons. For example, the pioneering papers of Mikaelian,
Sahdev and Samuel [2] and Brown, Sahdev and Mikaelian
[2] considered radiative charged weak boson production in
qq̄ and νe collisions. The cross sections for these processes
vanish when the photon is emitted in certain directions
(see below). Recently, experimental evidence for zeros of
this type has been found at the Fermilab Tevatron pp̄ col-
lider [4]. In addition to the phenomenological analyses,
a deeper theoretical understanding was developed in the
papers of [5]: the vanishing of the (tree–level) scattering
amplitude can be understood as arising from complete de-
structive interference of the classical radiation patterns of
the incoming and outgoing charged particles.

There have been many other studies exploring the phe-
nomenological aspects of radiation zeros. For example,
the introduction of (non–gauge) ‘anomalous couplings’ de-
stroys the cancellation which leads to the vanishing of the
amplitude, and so radiation zeros can be used as sensitive
probes of new physics [6–8]. More recently, the possibility
of detecting radiation zeros in eq scattering at HERA has
been investigated [9–13].

In the course of analysing the eq → eqγ matrix ele-
ments for ‘standard’ radiation zeros in [13], a new type
of zero was discovered. This appears to arise in a wider
class of processes, and in particular in the crossed process
e+e− → qq̄γ. This opens up the possibility of identify-
ing radiation zeros in high–energy e+e− annihilation into

hadrons, for example at a future linear collider. The pur-
pose of the present study is to calculate the position of
these zeros and to assess the feasibility of their observa-
tion in experiment.

Before studying the e+e− annihilation process in de-
tail, it may be useful to make some general observations
on the various types of radiation zeros. The discussion is
particularly simple when one considers the amplitude for
the emission of a single soft photon in a scattering process
1 + 2 → 3 + 4 + . . . involving charged particles.

The matrix element for one (soft) photon emission can
be written as

Mγ ' eJ · ε M0 , (1)
where M0 is the leading–order (no photon emission) ma-
trix element and ε is the polarisation vector of the pho-
ton, with polarisation and helicity labels suppressed for
the moment. The current is given by

Jµ =
∑

i

eiηi
pµ

i

pi · k
, (2)

where ei is the charge of the ith particle and ηi = +1,−1
for incoming, outgoing particles. Energy–momentum and
charge conservation give

∑
i ηip

µ
i = 0 and

∑
i eiηi = 0

respectively.
The classical (type 1) radiation zeros are obtained by

noting that the condition
ei

pi · k
= κ , (3)

where κ is a constant independent of i, immediately yields
Jµ = 0 and hence Mγ = 0, for all helicities and polarisa-
tions. Note that type 1 zeros require all particles to have
the same sign of electric charge. A simple example is pro-
vided by u(p1) + d̄(p2) → W+(p3) + γ(k), where a zero of
the amplitude is obtained for

2
3

1
p1 · k

=
1
3

1
p2 · k

⇒ cos θγ = −1
3

, (4)
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where θγ is the polar angle of the photon in the c.m.s.
frame with θγ = 0◦ in the incoming u–quark direction.

Type 2 zeros, on the other hand, only arise when the
scattering is planar [13], i.e. the three–momenta of all the
particles including the photon lie in the same plane. In
this case, if one chooses one of the photon polarisation
vectors ε⊥ to be orthogonal to the scattering plane then
ε⊥ ·pi = 0 for all i gives ε⊥ ·J = 0 for any orientation of the
particles and photon in the plane. The requirement that
the amplitude vanishes for all helicities and polarisations
means that one must also have ε‖ · J = 0, where (the
spatial part of) εµ

‖ is in the scattering plane and orthogonal
to the photon direction. The solution of ε‖ · J = 0 then
gives the position in photon angular phase of the radiation
zero. If we denote the direction of the three–momentum
of particle i by ni and the direction of the photon by n,
then the condition is (for massless particles)∑

i

eiηi

ε‖ · ni

1 − n · ni
= 0 , (5)

with ε‖ · n = 0. After some algebra, (5) can be cast into
the simpler form∑

i

eiηi cot(θγi/2) = 0 , (6)

where θγi is the angle between the photon and particle i
directions.1 Equation (6) allows us to derive an existence
proof for the zeros. First we note that cot(θγi/2) → ∞
as θγi → 0 – these are the usual collinear singularities
for massless gauge boson emission from massless fermions.
Second, we note that not all the eiηi can have the same
sign (charge conservation). Therefore there exists at least
one angular sector, between j and k say, where the collinear
singularity has the opposite sign (i.e. → ±∞) on the
boundaries of the sector. Since the left–hand side of (6) de-
fines a continuous function of the photon polar angle away
from the collinear singularities, according to the Interme-
diate Value Theorem the function must vanish somewhere
in the sector between j and k. The exact location of the
zero depends not only on the strength of the collinear
singularities at θγj , θγk = 0 but also on the other non–
singular contributions (i 6= j, k) to the current in that
region.

For 2 → 2 scattering the solutions to (5) or (6) can be
found analytically, for more complicated scattering numer-
ical methods can be used. The existence of zeros requires
certain constraints on the charges, masses and scattering
kinematics to be satisfied, as we shall see in the following
sections. For example, there are no collinear singularities
for massive fermions, and therefore the existence of a radi-
ation zero in the angular sector depends on how strongly
the distribution is peaked close to the massive particles,
which in turn depends on the exact value of the mass.

Type 2 zeros do not require that all the charges have
the same sign. For example, the process e−d → e−dγ has

1 Note that θγi must be defined in the same sense (clockwise
or anticlockwise from the γ direction) for each particle, so that
the cot can have either sign

zeros of both types, whereas e−e+ → dd̄γ only has type
2 zeros (see below). Although for simplicity we have used
soft–photon matrix elements and kinematics in the discus-
sion above, radiation zeros of both types are also found
when exact kinematics and matrix elements are used [13].

In this paper we present a detailed theoretical and
phenomenological study of (type 2) radiation zeros in the
scattering process e−e+ → qq̄γ at high energy. We shall
show that zeros exist for both u– and d–type quarks for
all helicities and polarisations. The zeros occur in photon
directions which are reasonably well separated from the
directions of the other particles in the scattering. Unfor-
tunately it is very difficult to obtain analytic expressions
for the positions of the zeros with exact matrix elements
and phase space. Results for the general case, obtained
numerically, will be presented in Sect. 5. However in the
soft–photon approximation (which in fact is the dominant
experimental configuration) it is possible to obtain rea-
sonably compact expressions. In Sects. 2 and 4 we use the
soft–photon approximation to locate the zeros, first for
massless and then for massive quarks. Section 3 briefly
discusses radiation at the Z pole. In Sect. 6 we perform a
Monte Carlo study, based on the exact matrix elements
and phase space, to obtain ‘realistic’ distributions of the
type which might be accessible experimentally. Finally,
our conclusions are presented in Sect. 7.

2 Massless quarks in the soft limit

We consider the processes

e−(1) e+(2) −→ q(3) q̄(4) + γ(k) , (7)
e−(1) e+(2) −→ q(3) q̄(4) + g(k) . (8)

The gluon emission process (8) does not contain radia-
tion zeros, but is useful for comparison. To begin with we
shall consider s–channel γ∗ exchange only, as this fully
determines the positions of the radiation zeros. The ex-
act matrix elements for these processes are (for massless
quarks and leptons, see for example [14])

|M3|2(e−e+ → qq̄ + γ)

= −3e6e2
q

t2 + t′2 + u2 + u′2

ss′ (v12 + eqv34)
2

, (9)

|M3|2(e−e+ → qq̄ + g)

= −4e4e2
qg

2
s

t2 + t′2 + u2 + u′2

ss′ (v34)
2

, (10)

with the standard definitions for the 2 → 3 Mandelstam
variables

s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p1 − p4)2 ,

s′ = (p3 + p4)2 , t′ = (p2 − p4)2 , u′ = (p2 − p3)2 , (11)

and

vij =
pµ

i

pi · k
− pµ

j

pj · k
. (12)
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e+(p2)

q(p4)

e-(p1)

q(p3)

φγ

θ4

θγ

Θcm

Fig. 1. Parameterisation of the kinematics for e−(p1)e+(p2) →
q(p3)q̄(p4)+γ(k) scattering in the e−e+ c.m.s. frame. The ori-
entation of the photon relative to the scattering plane is de-
noted by the angles θγ and φγ . Note that θγ = θ2

In the soft limit, i.e. ωγ,g/Ei → 0, we may use 2 → 2
kinematics for the e−e+ → qq̄ part of the process. The
four–vectors in the c.m.s. frame can then be written as

pµ
1=

√
s

2
(1, 0, 0,−1) , (13)

pµ
2=

√
s

2
(1, 0, 0, 1) , (14)

pµ
3=

√
s

2
(1,− sinΘcm, 0,− cos Θcm) , (15)

pµ
4=

√
s

2
(1, sinΘcm, 0, cos Θcm) , (16)

kµ=ωγ,g (1, sin θγ,g cos φγ,g, sin θγ,g sinφγ,g, cos θγ,g) .

(17)

These kinematics are illustrated in Fig. 1.
Radiation zeros for process (7) arise from the vanishing

of the (v12 + eqv34)
2 term. This is the ‘antenna pattern’

Fγ = −J · J of the soft emission process, see for exam-
ple [15–17]. A useful parameterisation is to introduce the
variables zi = cos θi which specify the angular separation
of the soft photon or gluon from particle i. The eikonal
factors which make up the antenna pattern are then

[ij] ≡ pi · pj

(pi · k)(pj · k)
=

1
ω2

1 − cos θij

(1 − zi)(1 − zj)
, (18)

and the antenna patterns themselves can be readily ob-
tained from (9, 10)

1
2
Fγ=[12] + e2

q[34] − eq ([13] + [24] − [14] − [23]) , (19)

1
2
Fg=[34] . (20)

We see immediately that there are no radiation zeros of
type 1 [13], as this would require (for the vanishing of Fγ)

−1
1 + z2

=
1

1 − z2
=

eq

1 + z4
=

−eq

1 − z4
, (21)

which has no solutions in the physical domain.
In contrast, type 2 radiation zeros are located in the

event scattering plane [13] and do not fulfill condition
(21). For a complete set of kinematic variables in the
soft–photon limit we may take the qq̄ c.m.s. scattering

angle Θcm and two of the zi variables introduced above:
Fγ = Fγ(Θcm, eq, z2, z4), since z1 = −z2 and z3 = −z4 in
the c.m.s. frame. To locate the zeros we solve

Fγ(Θcm, eq, z2, z4) = 0 (22)

and find
ẑ4 = −eqz2 ±

√
f(Θcm, eq) , (23)

with
f(Θcm, eq) = 1 + e2

q + 2eq cos Θcm . (24)

As we expect the (type 2) radiation zeros to be located
in the scattering plane2, we set φγ = 0◦ and derive as an
additional condition

z4 = cos θ4=cos(θγ − Θcm) = sin θγ sinΘcm

+ cos θγ cos Θcm

=
√

1 − z2
2 sinΘcm + z2 cos Θcm . (25)

The solutions of (23) are tangential hyperplanes to (25)
in the Θcm, z2 space for given charge eq. Thus we find the
positions of the radiation zeros for given eq and c.m.s.
scattering angle by solving

d

dz2
ẑ4 =

d

dz2

(√
1 − z2

2 sinΘcm + z2 cos Θcm

)
, (26)

which immediately yields

eq =
z2√

1 − z2
2

sinΘcm − cos Θcm . (27)

The solutions are

ẑ2 = cos θ̂γ = ± eq + cos Θcm√
f(Θcm, eq)

, (28)

with ‘+’ if φ̂γ = 0◦ and ‘−’ if φ̂γ = 180◦. Equation
(28) yields physical solutions for both eq = −1/3 (d–type
quarks) and eq = 2/3 (u–type quarks) in the complete
range of Θcm.

We mention several other interesting features.

(i) If we substitute the solution for ẑ2 of (28) and ẑ4 of
(23) into the antenna pattern Fγ we find

[12] = e2
q[34] =

1
2
eq([13] + [24] − [14] − [23]) , (29)

i.e. the interference term exactly cancels the sum of
the leading pole terms which are equal. Therefore
solving Fγ = 0 is equivalent to solving [12] = e2

q[34]
in the massless case. We shall test this feature later
for massive quarks.

(ii) From (28) we see that the radiation zeros are or-
thogonal to the beam direction for cosΘcm = −eq

which means Θcm ∼ 131.8◦ for u–type quarks and
Θcm ∼ 70.5◦ for d–type quarks.

2 Note that it is straightforward to show that there are no
additional zeros with φγ 6= 0◦, 180◦
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Fig. 2. Surface plots of the antenna pattern
Fγ in the angular phase space of the soft pho-
ton (left–hand side) and slices through the
event plane (right–hand side) at φ̂γ = 0◦ to
illustrate the positions of the radiation zeros.
We show the process e−e+ → qdq̄dγ for three
different c.m.s. frame angles a Θcm = 60◦,
b Θcm = 90◦ and c Θcm = 120◦. The dashed
lines are the corresponding distributions for
soft gluon emission

(iii) The radiation zeros are located in different sectors:
for d–type quarks they are located between the direc-
tions of the incoming e+ and outgoing q̄ and between
the incoming e− and outgoing q directions, respec-
tively. For u–type quarks the radiation zeros can be
found between the incoming e− and outgoing q̄ and
between the incoming e+ and outgoing q directions,
respectively. This makes the discrimination between
different charged quarks straightforward, at least in
principle.

(iv) There is one kinematic configuration for which the
separation between the radiation zero direction and
the direction of the outgoing quark (antiquark) is
maximal. By solving

d

dΘcm

{
cos−1

(
± eq + cos Θcm√

f(Θcm, eq)

)
− Θcm

}
= 0 ,

(30)
we can show that this is the case if the radiation
zeros are located orthogonal to the beam direction
(the corresponding values of Θcm are given above).

The separations are then

∆θmax
γ =41.8◦ for u–type quarks , (31)

∆θmax
γ =19.5◦ for d–type quarks . (32)

In Figs. 2,3 we show the antenna patterns Fγ of (19)
for process (7) with three different c.m.s. frame scattering
angles Θcm = 60◦, 90◦ and 120◦. Additionally we show a
slice through the soft–photon phase space at φ̂γ = 0◦ to
illustrate the positions of the radiation zeros. For com-
parison we also show the antenna patterns for soft–gluon
emission as defined in (20). This has no initial–, final–state
interference and therefore no zeros.3 Comparing the pro-
duction of d–type quarks and u–type quarks, i.e. Figs. 2
and 3, shows that the most striking qualitative feature is
the appearance of radiation zeros in different sectors, as
discussed above.

In Fig. 4 we present the positions of the radiation ze-
ros (φ̂γ = 0◦, θ̂γ) given by (28), as a function of the

3 Note that up to charge factors the final–state collinear sin-
gularities are the same in both cases however
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Fig. 3. Same as Fig. 2, but for the process
e−e+ → quq̄uγ

c.m.s. frame scattering angle, for both d–type and u–type
quarks. Note that radiation zeros exist in both cases for all
values of Θcm, and also that the radiation zeros for u–type
production are more clearly separated from the collinear
singularities. For zero–angle scattering (Θcm = 0◦, 180◦)
the zeros become pinched along the beam direction. Note
that the t–channel process e+q → e+qγ [13] shows a qual-
itatively different behaviour in the zero–angle scattering
limit: in that case the radiation zeros were located on a
cone with fixed angle around the beam direction.

It should be obvious from the above that in order to
locate a radiation zero one has to be able to distinguish
a quark jet from an antiquark jet. Thus if one (3 ↔ 4)
symmetrises the expression in (19) for Fγ , the interference
term vanishes and there is no zero. In practice distinguish-
ing between the quark and antiquark jet is likely to be
very difficult, but not impossible. For example, for light–
quark jets one could try to tag on the charge of the fastest
hadron in the jet. For heavy (charm, bottom) quark jets
one could in principle use the charge of the lepton from the
primary weak decay of the quark to distinguish the quark
from the antiquark. Methods like these are likely to have

poor efficiency, so in practice one would be looking for a
slight dip in the photon distribution in the vicinity of a
zero when a tagged sample is compared with an untagged
sample with the same overall kinematics.

3 Radiation on the Z0 pole

The general discussion on radiation zeros presented in the
Introduction assumed that the hard scattering is charac-
terised by a single (large) energy scale, so that the in-
coming and outgoing particles emit photons on the same
timescale. This corresponds to coherent emission and al-
lows the interference to be maximal. However, care must
be taken when two timescales are involved, for example
when there is an intermediate particle which is relatively
long lived. In this case the emission off the initial– and
final–state particles can occur at very different timescales
and the interference between them can be suppressed. In
fact this is exactly what happens for the process e+e− →
ff̄ on the Z pole, i.e. when

√
s ' MZ .
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Fig. 4. The positions (φ̂γ , θ̂γ) of the radiation zeros for the pro-
cesses e−e+ → qdq̄dγ and e−e+ → quq̄uγ as a function of the
c.m.s. frame scattering angle Θcm and fixed φ̂γ = 0◦. The dot–
dashed line shows the position of the final–state collinear sin-
gularity (i.e. the direction of the outgoing antiquark). Massless
quarks are assumed. Note that the distribution for φ̂γ = 180◦

shows a π − Θcm symmetry

A formalism has been developed for taking these effects
into account (see [15 – 22] and in particular [20]). In simple
terms, the interference between emission during the pro-
duction and decay stages of a heavy unstable resonance of
width Γ is suppressed by a factor χ = Γ 2/(Γ 2 + ω2), i.e.
there can be no interference when the timescale for pho-
ton emission (∼ 1/ω) is much shorter than the lifetime of
the resonance (∼ 1/Γ ).

In the present context, the antenna pattern of (19)
is only valid far away from the Z pole,

√
s � MZ or√

s � MZ . On the Z pole we have, in contrast,

1
2
Fγ

Z = [12] + e2
q[34] − χZeq ([13] + [24] − [14] − [23]) ,

(33)
where

χZ =
M2

ZΓ 2
Z

(PZ · k)2 + M2
ZΓ 2

Z

=
Γ 2

Z

ω2 + Γ 2
Z

. (34)

The second expression in (34) corresponds to the c.m.s.
frame. For ω � ΓZ there is no interference (and therefore
no radiation zero), and the radiation pattern corresponds
to incoherent emission off the initial– and final–state parti-
cles. On the other hand the radiation zero reappears in the
limit ω/ΓZ → 0. It is straightforward to show that in this
limit the minimum value of the distribution is O(ω2/Γ 2

Z).
The effect of the finite Z width on the interference be-

tween initial– and final–state radiation was studied in de-
tail in [23]. The DELPHI collaboration [24] subsequently
confirmed the theoretical expectations and used the size
of the measured interference to determine ΓZ .

Since in the present study we are interested in radia-
tion zeros, we must require that the collision energy (and
the photon energy4) are such that the internal Z propaga-
tor is always far off mass–shell. This effectively guarantees
that χ = 1 and hence that the radiation pattern is again

4 For
√

s > MZ we can avoid ‘radiative return’ to the Z pole
by placing an upper bound on the photon energy

given by (19). Unfortunately this means that we are un-
able to use the greatly enhanced statistics of LEP1 and
SLC in searching for radiation zeros.

4 Massive quarks in the soft photon limit

In this section we repeat the analysis of Sect. 2 but now
including a non–zero mass for the final–state quarks. It is
straightforward to derive the corresponding antenna pat-
tern in the soft–photon approximation, see for example
[17,20–22]. The eikonal factors for massive particles read

[ij]m =
1
ω2

1 − ρiρj cos θij

(1 − ziρi)(1 − zjρj)
. (35)

We continue to use massless initial–state electrons, so that
ρ1 = ρ2 = 1 and ρ3 = ρ4 = ρ =

√
1 − 4m2

q/s. The an-
tenna pattern of (19) now has additional contributions:

1
2
Fγ

mq
=[12]mq + e2

q

(
[34]mq − 1

2
m2

q

(p3 · k)2
− 1

2
m2

q

(p4 · k)2

)
−eq

(
[13]mq + [24]mq − [14]mq − [23]mq

)
. (36)

We first consider the limits of ρ ∈ [0, 1]

ρ = 0 : Fγ
mq

=2[12]mq
=

4
ω2

γ

1
1 − cos2 θγ

, (37)

ρ = 1 : Fγ
mq

=Fγ . (38)

The first of these limits is just the well–known result that
heavy charged particles at rest do not radiate, and there
are clearly no radiation zeros. As Fγ does contain radia-
tion zeros, we might anticipate a non–trivial ρ dependence
of their position as we increase the mass from zero, with
the zeros eventually vanishing for some critical mass.

A numerical study confirms this result. We again find
zeros in the scattering plane (φγ = 0◦). Solving Fγ

mq
= 0

now gives

ẑ
mq

2 =
2
eq

eqρ cos Θcm + 1 + gρ(Θcm, eq)
2fρ(Θcm, eq)√−2fρ(Θcm, eq)gρ(Θcm, eq)

, (39)

with

fρ(Θcm, eq)

= ρ2 + e2
q + 2eqρ cos Θcm , (40)

hρ(Θcm, eq)

= −2eq cos Θcm
(
1 + ρ2)− ρe2

q

(
1 + cos2 Θcm

)− 2ρ ,(41)

gρ(Θcm, eq)
= ρhρ(Θcm, eq) (42)

+ρ

√
hρ(Θcm, eq)2 − 4fρ(Θcm, eq) (eqρ cos Θcm + 1)2.

It is straightforward to show that in the massless limit
(ρ = 1) (39) reduces to (28). Note that at the positions of
the zeros we have, as in the massless case,

[12]mq = e2
q

(
[34]mq − 1

2
{
[33]mq + [44]mq

})
, (43)
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GeV. Note that the appearance of radiation zeros is dependent
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with the interference again canceling the sum of these two
terms.

Taken together, the (39–42) only have physical solu-
tions for a certain range of ρ ∈ [ρcrit, 1]. In particular, if
the ratio mq/Ee− (quark mass over beam energy) becomes
too large the radiation zeros disappear. Figure 5 shows the
positions θ̂γ of the radiation zeros inside the event plane
(φ̂γ = 0◦) as a function of ρ for a fixed beam energy
Ee− = 100 GeV, for both d–type and u–type quarks, and
for different values of the c.m.s. scattering angle Θcm. The
dashed lines indicate the values of ρcrit. There is one kine-
matic configuration Θ̃cm for which mcrit

q becomes maxi-

mal, i.e. an upper limit on the quark mass for which radi-
ation zeros can still be observed. We find

ρ̃crit =
1
2

√
4 − e2

q⇐⇒m̃crit
q =

√
s

2
|eq|
2

⇐⇒cos Θ̃cm =
−eq√
4 − e2

q

. (44)

For the production of d–type quarks we obtain m̃crit
q =

16.7 GeV at Θ̃cm = 80.3◦, and for u–type quarks we find
m̃crit

q = 33.3 GeV at Θ̃cm = 110.7◦. According to (44) we
require a beam energy of at least Ee− = 525 GeV to ob-
serve radiation zeros in the process e−e+ → tt̄γ assuming
a top quark mass of mt = 175 GeV and an even higher en-
ergy to achieve a reasonable separation from the outgoing
partons (see Fig. 6).5

For Θcm = 90◦ we can write the solutions in a very
compact form. We find as a condition for which radiation
zeros exist:

ρ ≥ ρcrit =
2√

4 + e2
q

⇐⇒ mq ≤
√

s

2
|eq|√
4 + e2

q

. (45)

For example, in order to observe radiation zeros in 90◦
back–to–back scattering with Ee− = 100 GeV we need
md−type < 16.4 GeV or mu−type < 31.6 GeV, conditions
satisfied by all five light–quark flavours.

In Table 1 we present numerical values for ρcrit and for
mcrit

q , assuming a beam energy for the latter of Ee− = 100
GeV. The values for ρcrit are illustrated in Fig. 5.

An interesting conclusion from Table 1 concerns e−e+

→ bb̄ + γ. Assuming a mass for the b quark of mb '
4.5 GeV, the actual kinematics for the observation of ra-
diation zeros become critical, especially at small c.m.s.
scattering angles. For example, the outgoing b and b̄ jets
should be located at around 90◦ ± 30◦ from the beam di-
rection (cf. Fig. 6). Then the radiation zeros not only exist,
but are also reasonably well separated from the collinear
singularities (again cf. Fig. 6).

5 Radiation zeros
for arbitrary photon energies

We have so far identified radiation zeros using analytic
techniques in the soft–photon approximation to the scat-
tering matrix elements and phase space. However, as for
the eq → eqγ scattering process studied in [13], zeros are
also found in the exact cross section for fixed photon en-
ergies up to a critical maximum value.

To quantify this, we study planar e−e+ → qq̄γ events
in which (i) the polar angle of the quark (Θcm) is fixed, (ii)
the energy of the photon (ωγ) is fixed, and (iii) the polar
angle of the photon (θγ) is varied. Note that the energy of

5 We do not consider here the contributions to the radiation
pattern from photon emission off the decay products of heavy
unstable quarks
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Table 1. Conditions for the appearance of radiation zeros for
different c.m.s. frame scattering angles Θcm. The numbers in
each row are ρcrit and mcrit

q , assuming a beam energy of Ee− =
100 GeV for the latter. Critical mass values for other beam
energies can be obtained by simple rescaling

d–type quarks u–type quarks

Θcm ρ ≥ mq ≤ ρ ≥ mq ≤

15◦ 0.9986 5.23 GeV 0.9977 6.72 GeV

30◦ 0.9951 9.82 GeV 0.9913 13.18 GeV

45◦ 0.9911 13.34 GeV 0.9815 19.13 GeV

60◦ 0.9878 15.60 GeV 0.9699 24.34 GeV

75◦ 0.9861 16.59 GeV 0.9583 28.58 GeV

90◦ 0.9864 16.44 GeV 0.9487 31.62 GeV
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Fig. 7. The positions θ̂γ of the radiation zeros for the processes
e−e+ → qdq̄dγ and e−e+ → quq̄uγ as a function of the photon
energy ωγ , for Ee− =

√
s/2 = 100 GeV and fixed c.m.s. frame

(quark) scattering angle Θcm = 90◦

the quark and the four–momentum of the antiquark are
then fixed by energy–momentum conservation. In the limit
ωγ → 0 the kinematics of the soft–photon approximation
studied in previous sections are reproduced. We find, as in
[13], that the matrix element has radiation zeros for non–
zero ωγ , and that the position of the zero varies smoothly
as ωγ increases from zero. This is illustrated in Fig. 7,
which shows the position θ̂γ of the zero as a function of ωγ ,
for d–type and u–type quarks and Θcm = 90◦. The values
at ωγ = 0 coincide with those obtained analytically in
the soft–photon approximation, see for example Fig. 4. A
variation of the position of the zero with the photon energy
is to be expected, since with the above kinematics the

direction of the antiquark changes as the photon energy is
varied.

If the photon is too energetic then the zeros can disap-
pear. This was also a feature of the eq → eqγ process stud-
ied in [13]. For example, for eq = +2/3 and Θcm = 90◦ we
only have radiation zeros for ωγ/Ebeam < 0.47. However
because of the soft–photon energy spectrum, such upper
limits are not particularly relevant in practice. Since the
position of the zero varies with the photon energy, any
binning in this quantity (above say some small thresh-
old value ωmin

γ ) will remove the zero and replace it with
a sharp minimum located near the corresponding soft–
photon approximation position. We will illustrate this in
the following section.

6 A Monte Carlo study for bb̄γ production

Our study so far has been based on the ideal but unreal-
istic situation of well–defined four–momenta for the jets
and the photon, fixed at particular directions in phase
space. In practice, experiments deal with binned quanti-
ties and jets of finite mass and width. A more realistic
study should therefore take these into account. Rather
than try to model a particular detector capability, we can
define a simple set of cuts which should take the main ef-
fects of smearing and binning into account. The aim is to
see whether the radiation zeros remain visible after a more
realistic analysis. We will, however, make the assumption
that in our sample of bb̄γ events the b–jet can be distin-
guished from the b̄–jet. This guarantees a radiation zero
in the ideal case, as discussed in the previous sections.

We first generate a sample of bb̄γ events using a Monte
Carlo which includes the exact phase space and matrix
element. We choose a centre–of–mass energy of

√
s =

200 GeV. For this energy we can safely use the mb = 0
massless quark approximation. As a further simplification
we include only s–channel γ∗ exchange.6 The following
sequence of cuts is applied:

10 GeV < ωγ < 40 GeV < Eb̄ < Eb , (46)

to ensure that the photon is the softest particle in the final
state, and that the b–quark direction coincides with the
thrust axis of the event. The photon is also required to be
separated in angle from the beam and jet directions:

θγ,beam > 20◦ , θγ,bθγ,b̄ > 10◦ . (47)

These cuts serve to define a ‘measurable’ sample of bb̄γ
events.

To investigate the radiation zero we must introduce a
planarity cut on the bb̄γ final state. We do this by requiring
that the normals to the two planes defined by (i) the beam
and outgoing b–quark directions and (ii) the b̄–quark and
photon directions are approximately parallel:

|n13 · n4k| > cos 20◦ , (48)

6 Including also Z exchange only affects the overall normal-
isation and not the shape of the photon distributions
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using the notation for momenta defined in (7). We can
then study the polar angle (θγ) distribution of the photon
for various values of the polar angle (Θcm) of the thrust
axis (b–quark direction) with respect to the beam direc-
tion. In practice, we consider a bin centred on θb = Θcm
of width 10◦, i.e. we integrate over

Θcm − 5◦ < θb < Θcm + 5◦ . (49)

Note that our cuts are deliberately chosen to mimic the
soft–photon kinematics used in Sect. 2. However because
we integrate over the photon energy and smear the polar
angle and planarity criteria we expect to see dips in the
photon distribution rather than strict zeros.

Figure 8 shows the θγ distribution for (a) Θcm = 60◦,
(b) Θcm = 90◦ and (c) Θcm = 120◦. Comparing with
Fig. 2, we once again see sharp dips at approximately the
same position as in the ‘ideal’ soft–photon case. Note that
the collinear singularities evident in Fig. 2 are now re-
moved by the cuts. The suppression of the cross section
at the position of the zeros can further be appreciated by
comparing with the results obtained when the interference
term in the matrix element squared is set to zero, corre-
sponding to incoherent photon emission off the initial and
final states. The results of this approximate calculation,
shown as dashed lines in Fig. 8, do not exhibit any dip

structure in the region of the zeros and are clearly distin-
guishable from the exact results.

7 Conclusions

Radiation zeros are an important consequence of the gauge
structure of the electromagnetic interaction. They arise in
different types of high–energy scattering processes. In this
paper we have investigated a particular type of radiation
zero (‘type 2’ or ‘planar’) which is a feature of the process
e+e− → qq̄γ. We derived expressions for the locations
of the zeros in the soft–photon limit, and showed that
the zeros persist for hard photons and massive quarks.
However the experimental verification of such zeros is not
straightforward. The zeros disappear on the Z0 pole be-
cause the interference between initial– and final–state ra-
diation is suppressed by the finite Z lifetime. The colli-
sion energy must therefore be greater or less than MZ .
Unfortunately the number of events beyond the Z0 pole
at present colliders is quite low. Apart from the resulting
issue of the overall event rate, it is necessary to be able
to distinguish quark from antiquark jets in order to com-
pare with our predictions. This can perhaps we done with
some efficiency for b–quark jets. We performed a Monte
Carlo study which showed that ‘realistic’ distributions do
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indeed exhibit sharp dips in particular regions of phase
space. Further studies using a more complete simulation
of the final–state hadronisation process would be worth-
while.
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